Problem 74

(a) If your speedometer has an uncertainty of $2.0 \mathrm{~km} / \mathrm{h}$ at a speed of $90 \mathrm{~km} / \mathrm{h}$, what is the percent uncertainty? (b) If it has the same percent uncertainty when it reads $60 \mathrm{~km} / \mathrm{h}$, what is the range of speeds you could be going?

Solution

Part (a)

Use the formula for percent uncertainty and plug in the numbers.

$$
\text { Percent Uncertainty }=\frac{\delta A}{A} \times 100 \%=\frac{2.0 \frac{\mathrm{~km}}{\mathrm{~h}}}{90 \frac{\mathrm{~km}}{\mathrm{~h}}} \times 100 \% \approx 2.2 \%
$$

Part (b)
Start with the same formula.

$$
\text { Percent Uncertainty }=\frac{\delta A}{A} \times 100 \%
$$

Assume that the percent uncertainty is the same as in part (a) and that the speed is $60 \mathrm{~km} / \mathrm{h}$.

$$
\frac{2.0 \frac{\mathrm{~km}}{\mathrm{~h}}}{90 \frac{\mathrm{~km}}{\mathrm{~h}}} \times 100 \%=\frac{\delta A}{60 \frac{\mathrm{~km}}{\mathrm{~h}}} \times 100 \%
$$

Solve for δA, the uncertainty.

$$
\frac{2.0}{90}=\frac{\delta A}{60 \frac{\mathrm{~km}}{\mathrm{~h}}}
$$

Multiply both sides by $60 \mathrm{~km} / \mathrm{h}$.

$$
\delta A=\frac{2.0(60)}{90} \frac{\mathrm{~km}}{\mathrm{~h}}=\frac{4}{3} \frac{\mathrm{~km}}{\mathrm{~h}} \approx 1.3 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

Consequently,
Minimum Speed: $\quad 60 \frac{\mathrm{~km}}{\mathrm{~h}}-\frac{4}{3} \frac{\mathrm{~km}}{\mathrm{~h}} \approx 58.7 \frac{\mathrm{~km}}{\mathrm{~h}}$
Maximum Speed: $\quad 60 \frac{\mathrm{~km}}{\mathrm{~h}}+\frac{4}{3} \frac{\mathrm{~km}}{\mathrm{~h}} \approx 61.3 \frac{\mathrm{~km}}{\mathrm{~h}}$.

